
,fD-AG91 821- ROCHESTER UNIV N Y F/S 9/2
BIPLOT DISPLAY OF MULTI VARIATE MATRICES FOR INSPECTION OF DATA -- ETC(U)
SEP 80 K R GABRIEL NOOO480-C..O87

UNCLASSIFIED TR-801 NL



1111 28 1

1111 1102.-

11111 1.8

III,.11111 1.11-

MICROCOPY RESOLUTION TEST CHART





BIPLOT DISPLAY OF MULTIVARIATE MATRICES

FOR INSPECTION OF DATA AND DIAGNOSIS*U

BY

Department of Statistics/
and

Division of Biostatistics
Technical Report 801

University of Rochester
Rochester, New York 14642

USA

Presented at the symposium, "Looking at Multivariate
Data", at Sheffield, England, March 1980

Supported by Contract N from the Office of
Naval Research. Repro uction in 0 or in part is
permitted for any purpose of the United States Government.

L .. .. , .. . . 3O7c,



NTIS GZ~

T TIC 
TAB

Display 1: A BiplotB-

{0 au is u-th row marker
Leged: Vb,,is v-th column marker

Y A 131

1 002

ob
24

-tI

-21



Display 2: Inner product representation of matrix
elements on the biplot of Display 1
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In this paper, I will discuss the biplot as a graphical

multivariate technique, and I shall start by showing what a

biplot is. I will then explain and illustrate its use in two

applications: (1) in inspecting data matrices and (2) in

diagnosing models to fit data. I will end by making some

comments on advantages of this particular method as compared

to other displays of multivariate data.

THE BIPLOT

A biplot (Gabriel, 1971, 1980) is a graphical display of

a matrix Y of n rows and m columns by means of markers

10a2,...,an for its rows and markers bl,b2,...,bm for its

columns. These markers are chosen in such a way that the

inner product aibj represents yij the i,j-th element of Y.

Now, if we assemble all the a markers as rows of a matrix A

and all the b markers as rows of a matrix B, then this inner

product relationship means that matrix product AB' represents

the matrix Y itself.

Let me make a remark about terminology. The prefix "bi"

in "biplot" does not refer to its being two-dimensional but

indicates that it is a Joint display of rows and of columns

of the matrix Y. When we have an analogous three-dimensional

display, we refer to that as a "bimodel"; the prefix "bi"

again indicates that it is a joint display of rows and columns;

the ending "model" signifies that it is not plotted in the

plane but uses further dimensions.

-Display 1-

A simple example of a biplot is given in Display 1. The

4 by 3 matrix Y can be factorized as the product AB' Aben
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4 by 2, B' being 2 by 3. The biplot displays the rows of A,

i.e., Ai,A2, A and 4,as well as the rows of B, i.e., hihi and

bl. The first row of A, i.e., the vector (2,2) is displayed as

the point a,; the second row (2,1) is displayed as the point a2,

and the other two rows as points a3 and A4. The columns of B'

are displayed as arrows bl,b2 and b3. The distinction between

arrow display for columns and point display for rows is con-

venient: The viewer immediately sees which are row markers

and which are column markers.

- Display 2 -

The inner product interpretation of this biplot can be

seen from Display 2 which shows two of the elements of Y.

Element Y2 ,3 is represented on the biplot by the inner product

of a2 and b3" This inner product can be visualized by taking

the direction through vector b3 and projecting the vector a2

onto it. The projection of a2 onto that direction is 3/V7-units

long; the length of b3 itself is VY units long; the product

is 3/V- x VT-= 3; hence, the inner product is -3, the negative

sign reflecting the projection's being in the direction opposite

to that of the vector projected upon. Indeed, element Y2, 3 is

equal to -3. For another example, take element Y3,3 : The

inner product of a3 with. 3 is visualized by projecting a3

onto the direction through. b3. (This is the same direction

that was used before.) The projection is of length. 3/2V7"

the vector projected onto is of length VT ; they are both

in the same direction; therefore, the inner product is

+3/2VT' x V-- 1 1/2, which is indeed the value of Y33.
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The matrix Y could be biplotted exactly because it was

of rank two. In general, an exact biplt of a matrix is

possible only if the matrix is of rank one or two, because

the biplot itself is planar. For a matrix of higher rank

several steps have to be taken in order to display it by an

approximate biplot. The first step is to approximate the

matrix Y by a matrix Y 2] of rank 2. The second step is to

factorize this rank 2 approximation Y[2] as a product AB' of

a matrix A(nx2) and a matrix B' (2xm)* The third step is

to take each row of matrix A as a row marker a and each

column of matrix B' as a column marker b. These markers are

then plotted as an approximate biplot of the original matrix Y.

We next consider each of these three steps of approxi-

mation, factorization and display. The best known method for

lower rank approximation is due to Householder and Young (1938).

It minimizes the sum of squares of the deviations of elements

of Y from elements of the reduced rank matrix Y However,

this method cannot be applied directly when weights are

involved. The elegant mathematical relations that were used

by Householder and Young break down as soon as one uses weighted

least squares and multiplies the squared deviation {yi,J-y[2]i,j)
2

by a weight wij. An algorithm is available (Gabriel and Zamir,

1979), which allows this more general approximation. For a

special kind of weights, Haber (1975) found an earlier solution.

Another method of fitting lower rank matrices is by adaptive

fits (McNeil and Tukey, 1975), and yet further methods might

become available.

Factorization of the rank 2 approximation Y[21 is always

Li
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possible. Matrices A(nx2) and B(mx2) that satisfy Y[2, " AB'

must exist. That follows from the definition of the rank

of a matrix. However, such a factorization is not unique. In

fact, if we post-multiply A by any 2 x 2 nonsingular R and pre-

multiply B' by the inverse R', the resulting (AR)(R -B factor-

ization is just as valid as the original AB' factorization. We

therefore have a choice as to which factorization to biplot.

Note that transformation by a nonsingular matrix consists of a

rotation of axes, a scaling along the new axes and another

rotation, whereas the transformation by the inverse consists

of the same rotations with a scaling which is reciprocal to

the first one. This may help to give an idea of how different

factorizations and different biplots are related. (An illustra-

tion of alternative factorizations and the resulting biplots

was given by Gabriel, 1971).

The non-uniqueness of the factorization has some advantages

for the statistician, who may choose a factorization which has

desirable data analytic or statistical features. For instance,

one particularly attractive factorization is referred to as the

GH' factorization. This has orthonormal columns for G and

therefore satisfies Y'Y - HH', which is especially useful if

the rows of Y represent individuals and the columns represent

variables. Then Y'Y is n times the estimated variance-covariance

matrix, and so the inner products of the rows h of H in a GH'

biplot represent the covariancesand the squared lengths of

the h's represent the variances. The cosines between h-vectors

therefore represent the correlations between the variables.

This biplot is useful in many statistical applications.



-5-

INSPECTION OF DATA

Next, I consider uses of the biplot. I will first describe the

use of the biplot for inspecting data matrices. It is partic-

ularly useful for studying large data matrices, where eyeballing

the large collection of numbers is quite impractical. Biplot

display makes it much easier to see the main features of the

matrix. I will illustrate this with a moderate size example

because it is easier to present that in a paper. I should stress
that I will not use the biplot to analyze the data statistically,

and certainly not to test it for significance. Rather, I will

use it for "looking at the data".

-Display 3 -

Display 3 shows the table of per capita protein consumption

in 25 European countries: The rows are countries and the

columns are nine different sources of protein. This matrix

is biplotted in Display 4 after the mean of each column has been

subtracted out. The points,or row markers, represent countriesi

the arrows, or column markers, represent sources of protein.

This happens to be a GH'-biplot so that the lengths of the

arrows represent the variances of the different sources of

protein and the angles represent their correlations. The center

of this biplot is at the European mean, or centroid, of all

these sources of protein. The goodness of fit of Y2 is of[2)
the order of 0.85; that is, the biplot displays 85% of the sum

of squares of the mean centered data matrix Y.

-Display 4-



Display 3: European protein consumption

(grams per head per day)

Meat Pigs Pulses
(Grazing and Star- Nuts, Fruits
ani- Paul- chy Oil- Vege-
mals) try Eggs Milk Fish Cereals Foods Seeds tables

Albania 10.10 . 1.40 0.50 .9- 0.20 42.30 0.60 S.-.0 1.70
Austria 8.90 14:00 4.30 19.90 2.10 28.00 3.60 1.30 4.30
Belg. Luxem. 13.50 9.30 4.10 17.50 4.50 26.60 5.70 2.10 4.00
Bulgaria 7.80 6.00 1.60 8.30 1.20 S6 70 1. LO 3.70 4.20
Czechoslovakia 9.70 11.40 2.80' 12.50 2.00 34.30 S.00 1.10 4.00
Denmark 10.60 10.80 3.70 25.00 9.90 21.90 4.80 0.70 2.40
East Germany 8.40 11.60 3.70 11.10 5.40 24.60 6.50 0.80 3.60
Finland 9.50 4.90 2.70 33.70 S.80 26.30 S.10 1.00 1.40
France 18.00 9.90 3.30 19.50 5.70 28.10 4.80 2.40 6.50
Greece 10.20 3.00 2.80 17.60 5.90 41.70 2.20 7.80 6.50
Hungary 5.30 12.40 2.90 9.70 0.30. 40.10 4.00 5.40 4.20
Ireland 13.90 10.00 4.70 2S.80 2.20 24.00 6.20 1.60 2.90
Italy 9.00 S.10 2.90 13.70 3.40 36.80 2.10 4.30 6.70
Netherlands 9.50 13.60 3.60 23.40 2.50 22.40 4.20 1.80 3.70
Norway 9.40 4.70 2.70 23.30 9.70 23.00 4.60 1.60 2.70
Poland 6.90 10.20 2.70 19.30 3.00 36.10 5.90 2.00 6.60
Portugal 6.20 3.70 1.10 4.90 14.20 27.00 5.90 4.70 7.90
Rumania 6.20 6.30 1.50 11.10 1.00 49.60 3.10 5.30 2.80
Spain 7.10 3.40 3.10 8.60 7.00 29.20 5.70 S.90 7.20
Sweden 9.90 7.80 3.S0 24.70 7.50 19.50 3.70 1.40 2.00
Switzerland 13.10 10.10 3.10 23.80 2.30 25.60 2.80 2.40 4.90
United Kingdom 17.40 5.70 4.70 20.60 4.30 24.30 4.70 3.40 3.30
USSR 9.30 4.60 2.10 16.60 3.00 43.60 6.40 3.40 2.90
West Germany 11.40 12.50 4.10 18.80 3.40 18.60 S.20 1.SO 3.80
Yugoslavia 4.40 5.00 1.20 9.50 0.60 55.90 3.00 5.70 3.20

AVERAGE 9.83 7.90 2.94 17.11 4.28 32.25 4.28 3.07 4.14

Source: A. Weber (1973) Agrarpolitik im Spannungsfeld der internationalen
Ernaehrungspolitik. Kiel, Institut &,er Airarpolitik und Marktlehre
(Mimeographed).
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Looking at the configuration of the nine sources of protein,

the most striking thing we see is that there is a very large

variance for cereals and a somewhat large one for milk, but

that the variances are relatively small for all the other sources

of protein. The correlations are also interesting. On the left-

hand side of the plot are all the animal sources of proteins;

the angles between them are fairly small, which indicates high

correlations between animal sources. Countries with high protein

consumption from meat appear also to have high protein consumption

from eggs, poultry, milk, etc. The marker for cereals is on the

right side of the biplot, at an angle of about 1800 to the markers

for animal sources. Evidently, countries that have a high con-

sumption of protein from animal sources have relatively low con-

sumption of cereal protein and vice versa. Next, we note the

markers for fruit and vegetables (and for fish (?)) to be at

about 900 to both animal source and cereal markers. Apparently

these sources of protein are pretty much uncorrelated with

animal and cereal proteins.

It is interesting to consider which countries are typical

of each source, i.e., which countries have high consumption of

each kind of protein. For that purpose, the row markers can be

displayed by means of three different symbols -- 1 for Western

and Northern Europe, 2 for Eastern Europe, and 3 for Mediter-

ranean countries. This simple device makes it easy to see that

Eastern European countries are on the right of the biplot along

with cereals; these countries consume much protein from cereals.

Western and Northern European countries are on the left along

with markers for animal protein. Mediterranean countries are

partly towards the bottom of the biplot, which indicates that
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fruit and vegetables, nuts, and fish are relatively important

sources of protein for them.

This example illustrates an important feature of the

biplot. It displays not only the configuration of the variables,

i.e., of the sources of protein, and the scatter of the individ-

uals, i.e., of the countries, but it also relates the two. It

therefore is able to reveal, for example, not only that con-

sumption of cereal proteins is negatively correlated with con-

sumption of animal proteins, but -- and this is the special feature

of the biplot -- it also identifies countries which are typical

users of cereal protein and countries which mostly use animal

proteins. This joint display of countries and sources justifies

the use of the prefix "bi".

Another method of displaying particular groups of countries

on the biplot is the use of a concentration ellipse for the

points of each group of interest. (A concentration ellipse is

the two-dimensional analogue of a mean ±SD interval: It is

centered on the points' centroid and its "shadow" in any direc-

tion is a univariate mean ±SD interval for the variate displayed

in that direction; see Dempster, 1969, Ch. 7.) The usefulness of

this concentration ellipse display is in summarizing a large

number of points of each group by a simple figure.

-Display 5 -

The biplot of Display 4 is shown again in Display 5 with

the countries' row markers replaced by concentration ellipses

for the three groups. This very clearly shows the Northern and

Western European group to be on the left, in the animal protein

direction; the Eastern group on the right in the cereal direction
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and the Mediterranean group to have a very elongated scatter

in the nuts, fish, fruit and vegetable directions. It is

obvious that the Eastern European group is much more hetero-

geneous than the Western and Northern European group and the

shape of the Mediterranean scatter makes one doubt whether

that should really be considered as a single group.

-Display 6 -

Use of concentration ellipses is of particular importance

when large sets of data need to be displayed and there are

more row markers than can be displayed effectively. Display 6

shows a biplot of breast tissue samples which were analyzed for

enzyme activity. (The data are due to Dr. Russell Hilf of the

Department of Biochemistry at the University of Rochester.)

The activity of several enzymes and other phenomena were

measured on each of several hundred breast tissue samples

which had also been classified into four diagnostic groups:

normal tissue (Group 4), cancerous tissue (Group 1) and two

kinds of benign growths (Groups 2 and 3). When all the 700-odd

points were displayed on the biplot, it was very difficult to

distinguish the four groups of points. But the biplot with the

concentration ellipses of the four groups -- Display 6 -- is

much easier to grasp. One sees a clear distinction between

the scatters of the cancerous and the normal tissues; each

shows different enzyme activities. The two benign growth groups

are intermediate between the preceding two in enzyme activities.

It is at times useful to consider only the variance-co-

variance configuration. Thus, in a GH' biplot one might omit



Display 6: Biplot of enzyme activity data for samples of
breast tissue with concentration ellipses for
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the markers fdr individuals (rows) and display only the

variables (columns) h-markers. This will be referred to as

a h-plot. One reason for wishing to ignore the individuals

could be that they might be mere samples, or replicates, from

a population -- and that it is only the population as an

aggregate that is of interest. At times, one might want to

use several h-plots and compare the variance-covariance con-

figurations of several different populations.

- Displays 7 & 8 -

An interesting example comes from the first randomized

rainmaking experiment in Israel. Days were randomly allocated

to have clouds seeded either in the North or in the Center

of Israel. Displays 7 and 8 are h-plots of the precipitation

in eight sub-areas of Israel -- Display 7 for Center-seeded

days, Display 8 for North-seeded days (Corsten and Gabriel,

1976). The two h-configurations are, at first glance, very

similar. At the top of each display is the h marker for the

South, then come the markers for the three sub-areas of the

Center of Israel, then,at the bottom of the displays, are the

markers for the North of Israel, and for the "buffer zone"

between the North and the Center. Both displays show that

there was high correlation between sub-areas within the North,

average correlation among the Center sub-areas and rather

low correlation between the Center and the North.
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Display 9: Means and error sums of squares and products of
anteater data

NUMBER ME AN S
LO0C AL I TY OF z 1z 2 z3 SUBSPECIES

___________________ SKULLS 12 .

1. Sta. Marta, Columbia 21 2.054 2.066 1.621 Instabilis

2. Mina Geraes, Brazil 6 2.097 2.100 1.625 Chapadensis

3. M~atto Grosso, Brazil 9 2.091 2.095 1.624 Chapadensis

*4. Sta. Cruz. Bolivia 3 2.099 2.102 1.643 Chapadensis

5. Panama 4 2.092 2.110 1.703 Chiriquensis

6. Mexico 5 2.099 2.107 1.671 Mexicana

Total 48

Within localities sum of squares and products (42 d.f.)

2 2 2 3

Z0.013631 0.012769 0.016438

Z20.012769 0.012923 0.017135

23 0.016438 0.017135 0.036152

The variables ZZ 2 'Z 3 are common logarithmis of, respectively,

basal length excluding the premaxilla, occipito nasal length

and greatest length of nasals
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Despite the overall similarity of the configurations of

North-seeded and Center-seeded days, some differences are

revealed by closer inspection of Displays 7 and 8. The most

striking difference is that the correlations are considerably

higher in the North when seeding was carried out in the North.

Also, when one compares the lengths of vectors on the two

h-plots, one readily sees that the variances of the Northern

sub-areas were larger when the North was seeded whereas the

variances of the Center sub-areas were larger when the Center

was seeded. The explanation for these findings may be that the

effect of seeding was (1) to make the seeded sub-areas more

similar to each other, and (21 to augment the variance of rain-

fall in the seeded area tthe means were also augmented -

though this is not shown on the h-plots).

- Display 9 -

A somewhat more elaborate example is the data in Display 9

of three different cranial measurements of how subspecies of

anteaters collected at six geographical locations (Reeve, 1940,

quoted by Seal, 1964). The matrix that would be biplotted here

is the six by three table of the six sample means of the logarithms

of the three cranial measurements. Since these are averages of

samples, it is appropriate when calculating their rank 2 approx-

imation, to weight them by the sample sizes and the inverse of

the within sum of squares and products matrix. This weighting

is identical to that used in one-way multivariate analysis of

variance (Gabriel, 1972).

- Display 10 -



On the resulting biplot, referred to as a JK'-biplot --

Display 10 -- each point represents a sample from one location

and each arrow represents a log characteristic measured -- one

of the three variables. What is immediately evident is that

the three samples of sub-species Chapadensis are very similar --

they are very close together on this biplot. The location of

Chiriquensis and the location of Instabilis are quite far from

these three biplot locations and from each other. Mexicana is

located between Chiriquensis and Chapadensis. Also, the general

direction of the variables is up and slightly to the right, hence

that is the direction of larger crania. This indicates that

Instabilis is a smaller type of anteater, whereas Chiriquensis,

Mexicana and Chapadensis are all larger. The difference

between Chapadensis and Chiriquensis, on the other hand, is

not one of overall size but one of a contrast between the

different variables. Chiriquensis is relatively larger on

the third variable -- greatest nasal length -- whereas

Chapadensis is relatively larger on the first two variables.

The two sub-species are thus seen to have different profiles

of the variables.

This JK' biplot differs from the GH' biplots described

above: Amongst other things, weights were used in fitting it.

However, because of the particular weights used, biplot dis-

tances represent Mahalanobis distances between the different

samples. Thus, the Mahalanobis distances between the Chapadensis

samples are small; the one between Mexicana and Chapadensis is

less then that between Chiriquensis and Chapadensis, etc.
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- Display 11 -

The Mahalanobis distance is closely related to Hotelling's

T2 except that the latter is scaled by the sum of the reciprocals

of the sample sizes. It is possible to approximate the Hotelling

T test between pairs of samples by drawing circles around the

biplot sample markers, where the radii of the circles depend on

the critical point used for testing and on the sizes of the

samples (Gabriel, 1972). This is illustrated in Display 11.

The interpretation of these "comparison circles" is very obvious:

Circles which intersect show a non-significant comparison; dis-

joint circles show a significant comparison. Thus, the three

circles for Chapadensis overlap very much with each other and

also with the Mexicana circle. This indicates that there are

no significant differences between the three Chapadensis samples,

nor between them and the Mexicana sample. Mexicana is not signif-

icantly different from Chiriquensis either. However, Mexicana is

significantly different from Instabilis. In fact, Instabilis

is found to be significantly different from everything else,

and Chiriquensis is also different from Chapadensis. The

general conclusions would be (1) that Instabilis indeed differs

from the rest of the anteaters and is a smaller type; (2) the

larger anteaters are of at least two groups: One containing

Chiriquensis, the other Chapadensis; Mexicana could belong to

either of these groups -- there are no significant differences

which would indicate to which.

The graphical test used here is an approximation to

Hotelling's T2. In many cases such a Gaussian test may not
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be valid and more robust tests might be needed. It might,

for example, 6e possible to carry out re-randomization tests

directly on biplots. We are currently trying out Mielke's (1976)

1"multiple reponse permutation procedures" for that purpose.

Let me stress, however, that I see a very limited role for -

significance testing in the exploration of such multivariate

data. In most multivariate situations, we have a fair number

ofsamples and a fair number of variables; and we are rarely

concerned with a test of an overall null hypothesis for all

samples and all variables. Instead we usually want to find

out what sort of differences exist and between which samples

they occur. We are trying to explore rather than to test.

Multivariate analysis is essentially an exploratory

technique rather than a confirmatory method. Indeed, by the

time one gets to the stage of confirmation and sets up a well-

defined null hypothesis for testing, one usually knows pretty

well which particular variable, or'what linear combination of

variables,one is really interested in, so that the testing

becomes univariate and not multivariate. I submit that multi-

variate analysis is principally exploratory and that techniques

such as the biplot are usually very much more to the point

than most tests of significance.
DIAGNOSIS OF MODELS

Another use of the biplot is that of diagnosing models

which will fit a data matrix. This use is particularly important

because statisticians really have very few techniques available

for inspecting a data matrix and deciding what sort of model

will fit it. Statistics textbooks have ample material on how

to test a model once we have formulated it, but little or

nothing on how to select a model, except by trial and error.
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A biplot may he used to diagnose a model by looking

for a pattern on the display and then infer mathematically

what model that implies for the data matrix. For example, if

the row markers are seen to be collinear, and the column markers

are also noted to be collinear, and the two lines are at right

angles to each other, one may infer that an additive model will

fit the data closely, i.e.,Yi,j = i + Bj, for some set of

alphas and betas. If, for another instance, one observes

row markers and column markers to be on two non-perpen-

dicular lines, one can infer that a concurrent model fits

the data, i.e., Yij= n + mij for some n, ai's and B's.

(This, by the way,is a reparametrization of Tukey's degree-of-

freedom-for-non-additivity model.) Also, if one observes that

all markers, for both rows and columns,are on one and the same

line, it is obvious the matrix is a rank one and so the model

isYij aiBj.

-Display 12-

Display 12 shows these and some other rules of diag-

nosis derived by Bradu and Gabriel (1978). The first line

indicates that when the row markers are collinear, the data

may be fitted by a columns regression model. (This model is due

to John Mandel (1961). It expresses each column as a linear

regression on given row effects ai). The next line of Display 12

similarly shows that, when the column markers are collinear,

each row can be modelled as a linear regression on fixed column

O's. When both row markers and column markers are collinear,

I . . I I . . . . . n i ! . . . .. . . . . . . . . . .n li . .. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . .
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Display 12: Some biplot diagnostic rules

dRow markers Col. Markers The model
a.b for yj s

collinear B.+ ~

columnsI
regress ion

collinear + YiBj

rows
regression

collinear collinear +. +i

concurrent
(d.o.f.n.a.)

collinear collinear + 8.
lines at 900 to each other additive

(.Eradu and Gabriel, 1978)
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a concurrpnt model is diagnosed (as noted above), unless these

two lines are at 900 to each other, in which case an additive

model is diagnosed (as also noted above).

The rules of Display 12 apply even if some of the biplot

markers are not on these lines. In such cases, the diagnoses

apply to the subtable of the rows and columns whose markers

are coll.inear. This is quite a remarkable feature of the biplot.

It makes it possible to diagnose models not only for the entire

matrix, but also for any sub-matrices. Most importantly, all

these diagnostic indicators are very simple. The eye very

easily picks up a straight line, even when it fits only some

of the row markers or some of the column markers.

- Displays 13 & 14 -

Here are some further examples. Bradu and Grine (1979)

considered cranial measurements for a number of specimens of

. fossils -- Display 13. This table has a large number of

missing values, so that ordinary techniques for fitting were

inappropriate. Bradu and Grine therefore used the algorithm

developed by Gabriel and Zamir (19791 for weighted least

squares and introduced 0 weights for the missing values and

unit weights for present values. The resulting biplot is

shown in Display 14. It is quite remarkable how closely the

row markers cluster around one line and the column markers

along another line. Using the diagnostics of Display 12,

Bradu and Grine inferred that a concurrent model would fit the

data very closely, as indeed it did. We note, however, that
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the angle between the lines is very close to 900 and suspect

that an additive model would also have fit pretty well.

- Display 15 -

A more complex example is data of Gamma radiation
-- Display 15 -- classified by distance from the radiation

source, number of intervening plates, the metal of which

these plates consisted and two replications. This is a four-

way layout so one has to confound several classifications in

the rows and/or in the columns before one can display it in

a biplot, as that is a matrix display. One way of doing this

is to consider the data in the matrix form of Display 15,

with the metals, distances and replications confounded in the

rows, and only the number of plates appearing in the columns.

This matrix -- after subtracting the overall mean -- is

biplotted in Display 16, in which the column markers represent

numbers of plates, and each. row marker represents a combination

of metal, distance and replication.

- Display 16 -

The biplot -- Display 16 -- of the radiation data clearly

shows a linear pattern for the number of plates. The pattern

for the row markers is not so immediately obvious. However, if

for each of the ten distance x metal combinations, we average

two replications, we find that these ten average markers lie on

a non-rectangular lattice: The metals form two parallel lines

and the distances form another five parallel lines. What model



Display 15: Absorption of gamma radiation by lead and aluminum

Distance Replic. Number of plates p

Row d in cm 1 3 6 7 10

Lead

1 3.8 1.801 1.765 1.696 1.670 1.606

2 5.2 1.621 1.572 1.516 1.486 1.425

3 6.0 1 1.526 1.481 1.406 1.401 1.333

4 9.0 1.222 1.169 1.102 1.078 1.010

5 12.5 0.973 0.939 0.862 0.850 0.781

6 3.8 1.805 1.768 1.704 1.680 1.615

7 5.2 1.609 1.572 1.511 1.482 1.408

8 6.0 II 1.494 1.461 1.387 1.324 1.315

9 9.0 1.233 1.208 1.130 1.111 1.046

10 12.5 0.978 0.930 0.870 0.844 0.779

Aluminum

11 3.8 1.834 1.818 1.811 1.790 1.777

12 5.2 1.632 1.613 1.600 1.603 1.597

13 6.0 1 1.509 1.482 1.476 1.454 1.447

14 9.0 1.249 1.224 1.204 1.211 1.179

15 12.5 0.976 0.971 0.966 0.960 0.943

16 3.8 1.916 1.913 1.884 1.887 1.871

17 5.2 1.732 1.723 1.698 1.696 1.674

18 6.0 II 1.632 1.624 1.592 1.588 1.579

19 9.0 1.344 1.341 1.312 1.311 1.290

20 12.5 1.118 1.118 1.106 1.086 1.066
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can be diagnosed from such a pattern? It may be useful to go

through the algebraic steps of modelling for this case. Start-

ing from any origin we can model the line for the column markers

= + A , where X is a parameter for the number of plates p

and B is in the direction in which the column markers lie.

We can alSo model the row markers for the average of the two

replications as Sd - *d + with parameter *d depending

on the distances d, and parameter *m on the metals m. Vector

would be in the direction of the parallels for the metals

whereas 8 would be in the direction of the parallels for the

distances. To see the form of the model for the data, we

take the inner-product
U I I

a PP -( + *6 )+(a +dd. m-
=¢d- a+ *m.. S + dxpZ E + *mXp. 68

This models the average Yd,m,p. by an effect due to distance,

plus an effect due to metal, plus two multiplicative effects,

i.e., interaction terms, one of distance with plates and the

other of metals with plates.

However, there is still more to be gleaned from the

biplot of Display 16. The lines for lead and for aluminum

are virtually parallel and pretty much at right angles to the

line for plates. In terms of our parametrizations, this

means the vector 0 is orthogonal to vector . Therefore,

the inner product O'x is zero and that texm vanishes from the
* I

model. Defining w d - *dx a, and up = a Ap 6 , one obtains

the model Yd,m,p. - d + *map, As * takes on only two values,

this results in two additive submodels, one for each metal.
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The distance effects wd are the same for both metals, but the

number of plate effects differ by a constant of proportionality.

Indeed this kind of model could be fitted to these data. Note

also that this example illustrates diagnosis for subtables:

Rule four of Display 12 directly indicates an additive model

for the data of each. metal. (See Kester, 1979, for further rules.)

Further parametrization could be effected by noting

that the distances along the lines through the column markers

were pretty much proportional to the number of plates and

therefore the parameters ap could be expressed as linear in

the number of plates; similarly, the parallel lines for dis-

tances were spaced pretty much proportionally to the distances

from the source of radiation and so wd could be presented as a

linear, or perhaps more precisely as a quadratic, expression

in the distance d. The actual model that was fitted was an

elaboration of the above and included linear and quadratic

terms in the number of plates and in the distances from the

source of radiation.

This is not only an instance of successful modelling but

also shows the method by which a pattern observed on the biplot

is translated algebraically into a model for the data.

All the models that we have diagnosed so far have been linear

or bilinear in the various effects. It may be of interest to con-

sider an instance in which such modelling was not sufficient.

The example is one of mean monthly temperatures during the

24 months of 1951 and 1952 at 50 stations on the American

continents (Brier and Meltesen, 1976) The data were bi-

plotted -- Display 17 -- after the average temperatures for

all 50 stations were subtracted out -- goodness-of-fit was 96%.

(7his analysis was carried out jointly with Mike Tsianco, 1980.)



- Display 17 -

There is nothing particularly revealing about the scatter

of row markers for the stations in Display 17. But the column

markers fan out in a rather systematic manner: At first sight

they would seem to be collinear and suggest a rows regression

model. However, the order of the different months is interest-

ing. It reveals a very similar configuration for the two years,

with January at the top, then February and December, then March

and November, and, somewhat farther down, April, October and

May, then June, August, July and September. What sort of model

does this suggest?

- Display 18 -

We note that the time sequence is systematic, going down

from January to February, then to March and further down till

June, then going up from July to December. This suggests that

the time sequence may really be three-dimensional, the up-down-up

movement on the biplot being complemented by a further change in

a third dimension separating spring from fall. It is therefore

worthwhile to fit a bimodel, i.e., a three-dimensional analogue

of a biplot, and look at the plane of the second and third

dimension, that is, essentially inspect the entire configuration

from the right-hand side. This is shown in Display 18 in which

the column markers are displayed on the plane of the second and

third axes of the bimodel. Now we see a clear elliptical pattern

from winter on the right, through spring at the bottom, summer

on the left and fall on top.
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Display 19 -

Another way of visualizing this is by means of ellipses

fitted to the three-dimensional h configuration. Display 19

shows several projections of these fitted ellipses as viewed

from the front, that is along the first and second dimensions;

as viewed from the side, as we saw a moment ago; as viewed

from the top; and as viewed orthogonally to the plane of the

ellipse. (Note that in Display 19 the individual months are

shown as averages for the two years and so there are only 12

markers instead of the 24 of Display 18. Also note that these

are not concentration ellipses.)

What can be inferred from this elliptic pattern about

models suitable for the data? What we are modelling by an

ellipse is the configuration of the h-vectors of the GH

bimodel. Y is displayed by rank 3 matrix product GH , and

we are not considering the G factor but only the 24 columns of

H, each having three elements. These h's have an elliptical config-

uration which we may model as follows,h=ip + acosS. + Bsinj,

for three-element vectors p,a and 0 and angles 01,....,24.

This familiar parametrization of an ellipse represents the

the center by y, the major axis by a, the minor axis by 0

and the points along it by angles Si.

So far we have a model for the h's as observed on the

bimodel. But our real concern is to obtain a model for the

data matrix itself, i.e., for the elements Yi'j" Now, the

bimodel representation is YiJ " qihJ for a row i of G and
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one of the vectors h. In view of the elliptical modelling

of the latter, we obtain yi,j =- Si + is-cosej + i.sinej •

This can be simplified by the following reparametrization:

i = *i icOs. -i i and *isini =

The model then becomes yij = ni + *icos*icos.j + *sin*isinoj'

and, by the ordinary laws of trigonometry, that equals

yi,j - ji + icos(qi + 8j). This simple harmonic model for

the data has thus been shown to have been diagnosed by means

of the bimodel.

This model makes a lot of meteorological sense. ni is a

station average temperature; *i the amplitude of the annual

harmonic variation in temperature, and when the model was fitted,

these amplitudes were found to be larger farther from the equator

and smaller close to the equator, as one would expect (Tsianco,

1980). The harmonic cosine element has its phases in terms of

two arguments, *i depending on the station i and 8j depending

on the month j. Tsianco found 8 to change from month to month

by almost exactly 2u/12, as one would expect from the annual

cycle of temperature. He found the fitted values of *i to be

much the same for all North American stations and again much

the same for all South American stations -- the difference

between the Northern and the Southern #i's was w -- which is

what one would expect since it is well-known that it is warm

in the North when it is cold in the South and vice versa.

This example has shown how inspection of a biplot/bimodel

may lead to observation of a pattern which can be modelled and

how such a model can lead to a model for the data themselves.

It has also shown that the resulting model is in accord with
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what we know about meteorology. Thus, biplot/bimodel inspec-

tion and consequent modelling for the data may give physically

appropriate models.

SOME GENERAL COMMENTS

It may be in order to state the sequence in which I think

display and modelling should be applied. One should begin by

fitting the biplot or bimodel to a data matrix; from inspection

of this display one might be able to infer a model or formulate

a description of the data. Before one could conclude that this

was an appropriate description, one should look at the residuals

and ask whether they might be related to the fit of the biplot

or the model, and/or whether they might be heteroscedastic. If

so, one should look for forms of re-expression in the hope of

yielding more homogeneous, less systematic, residuals from the

next fit. This fitting, looking at residuals, re-expression

sequence should be iterated until one is satisfied that the

residuals are mainly noise.

Whilst doing these inspections of residuals, one should

not merely look at general patterns of residuals but also spot

outliers. In fact, this would seem to be an essential pre-

liminary stage in all inspection of data. If there are extreme

outliers, one must check the records from which the data came --

most of the time one would find gross errors which need to be

corrected. In some cases, unexplained outliers would remain.

It is extremely important to note unexplained outlying residuals

in reporting analyses, even if they are omitted from the follow-

ing fits and modelling because the methods of fitting might be
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unduly influenced by them. Scientists who are interested in

the data often find the outliers to be the most fascinating

and instructive part of the whole data set. We, as applied

mathematicians, enjoy finding patterns and fitting models and

get the satisfaction of mathematical elegance of presentation

of these regularities. But this may be of little interest to

the scientists who are looking for new and unexpected phenomena

rather than for neat formulation of patterns with which they

are already familiar. It may well be that much of the progress

of science is in finding the unexpected, the outliers, and

being led to new ideas rather than in systematizing and para-

meterizing the familiar.

Let me make some final remarks about biplot display in

comparison to a number of other techniques of data analysis.

There are a number of steps in biplot display. (1) We start

with a matrix Y. (2) We compute a reduced rank approximation

Y 2 (3) We factorize that as Y[2] - AB'; and then (4) we

display the a's and b's in a biplot (or bimodel). Regularities

that are in the original data can generally be expected to

remain in the reduced rank approximation and therefore to be

expressed in the factorization and to appear as patterns on

the biplot. So matrix regularities will be displayed as biplot

patterns. But scientific inference must proceed in the opposite

direction. One observes the biplot patterns and tries to infer

about the data. This is possible to the extent that the steps

of approximation, factorization and display are reversible. Indeed,
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display is reversed by visualization and factorization by inner-

product multiplication. But the approximation step is reversible

only as well as the goodness of fit of the reduced rank approxi-

mation. Often these approximations are very close and then one

can say that the steps back from the biplot to the data can be

retraced almost exactly. A number of examples have been pre-

sented above which show how one may parameterize a relationship,

or pattern, on the biplot and then retrace the steps to see

what model suits the data matrix.

The possibility of reproducing the data, at least approxi-

mately, from the biplot/bimodel display, is a unique feature

of this particular method. There are a number of other methods,

such as multidimensional scaling or correspondence analysis, in

which one starts from a matrix, calculates a function of the

matrix, e.g., interpoint distances, correlations, etc. and then

produces some map of these distances or correlations by metric

or non-metric methods. If there are regularities in the data

then these maps of distances or correlations should reflect

them. But we cannot even approximately retrace the step from

the map of distances, or correlations, to the original data.

This is because the distance, or correlation, functions which

have been used to summarize the data are generally not one-to-one

functions. Hence one cannot reproduce the data. One may model

the distances, or correlations, but one cannot model the data

by any of these other methods. The biplot seems to be unique

in that it permits going back the extra step to the original

-l data.
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In summary, two main uses of the biplot have been pre-

sented. One is to inspect data matrices and look for patterns

and relationships. In that use the biplot is very similar to

several other methods. The other use of the biplot is to

diagnose models to fit the data. For that purpose the biplot

seems to be unique.

d

i
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